Technical Information

Adapter Sizing Chart

NPTF, BSPT and BSPP measure 1/4" larger than their actual size. For example, a $1 / 4^{\prime \prime}$ NPTF, BSPT or BSPP will actually measure $1 / 2^{\prime \prime}$ on the O . D. of the threads. JIC, SAE O-ring \& Flat Face threads measure as listed below. The first number listed is the size of thread, the second number is the threads per inch.

Size	NPTF (Pipe)	JIC (37$)$	SAE (O-Ring)	Face Seal (Flat Face)	BSPP (Parallel)	BSPT (Tapered)
-2	$1 / 8-27$	$5 / 16-24$	$5 / 16-24$	-	$1 / 8-28$	$1 / 8-28$
-3	-	$3 / 8-24$	$3 / 8-24$	-	-	-
-4	$1 / 4-18$	$7 / 16-20$	$7 / 16-20$	$9 / 16-18$	$1 / 4-19$	$1 / 4-19$
-5	-	$1 / 2-20$	$1 / 2-20$	-	-	-
-6	$3 / 8-18$	$9 / 16-18$	$9 / 16-18$	$11 / 16-16$	$3 / 8-19$	$3 / 8-19$
-8	$1 / 2-14$	$3 / 4-16$	$3 / 4-16$	$13 / 16-16$	$1 / 2-14$	$1 / 2-14$
-10	-	$7 / 8-14$	$7 / 8-14$	$1-14$	-	-
-12	$3 / 4-14$	$1-1 / 16-12$	$1-1 / 16-12$	$13 / 16-12$	$3 / 4-14$	$3 / 4-14$
-14	-	$1-3 / 16-12$	$1-3 / 16-12$	$15 / 16-12$	-	-
-16	$1-11-1 / 2$	$1-5 / 16-12$	$1-5 / 16-12$	$17 / 16-12$	$1-11$	$1-11$
-20	$1-1 / 4-11-1 / 2$	$1-5 / 8-12$	$1-5 / 8-12$	$111 / 16-12$	$1-1 / 4-11$	$1-1 / 4-11$
-24	$1-1 / 2-11-1 / 2$	$1-7 / 8-12$	$1-7 / 8-12$	$2-12$	$1-1 / 2-11$	$1-1 / 2-11$
-32	$2-11-1 / 2$	$2-1 / 2-12$	$2-1 / 2-12$	$21 / 2-12$	$2-11$	$2-11$

CAT 4-Bolt Flange (Caterpillar ${ }^{\ominus}$)

This connection is commonly used on Caterpillar ${ }^{\oplus}$ equipment. It is identical to the Code 62 flange, with two exceptions. The flange thickness is 0.560 " for all flange sizes and the use of a d-ring is required rather than an o-ring. The female (port) is an unthreaded hole with four bolt holes in a rectangular pattern around the port. The male consists of a flanged head, grooved for an d-ring, and either a captive flange or split flange halves with bolt holes to match the port. The seal takes place on the d-ring. The d-ring is compressed between the flange head and the flat surface surrounding the port. The threaded bolts hold the connection together.

JIC 37° Flare (SAE J514)

The $37^{\circ} \mathrm{JIC}$ (Joint Industrial Council) is a reliable, straight thread, single-flare design that is used across the world. It is very popular in many applications and environments because it's compact and easy to assemble. It also features high holding power with low torque requirements. The $37^{\circ} \mathrm{JIC}$ connection consists of three pieces: the nut, the sleeve, and the fitting in a range of sizes from $1 / 8^{\prime \prime}$ up to $2^{\prime \prime}$. The sleeve not only absorbs vibration, but acts as a support to the flare during assembly and helps reduce the risk of twisting the tube. Since the $37^{\circ} \mathrm{JIC}$ is a metal-to-metal seal, it can be connected and reconnected mutliple times.

Inch	Dash			
Size	Size	Nominal Thread Size	Male Thread O.D.	Female Thread I.D.
$1 / 8$	02	$5 / 16-24$	$5 / 16(.31)$	$9 / 32(.27)$
$3 / 16$	03	$3 / 8-24$	$3 / 8(.38)$	$11 / 32(.34)$
$1 / 4$	04	$7 / 16-20$	$7 / 16(.44)$	$13 / 32(.39)$
$5 / 16$	05	$1 / 2-20$	$1 / 2(.50)$	$15 / 32(.45)$
$3 / 8$	06	$9 / 16-18$	$9 / 16(.56)$	$17 / 32(.51)$
$1 / 2$	08	$3 / 4-16$	$3 / 4(.75)$	$11 / 16(.69)$
$5 / 8$	10	$7 / 8-14$	$7 / 8(.88)$	$13 / 16(.81)$
$3 / 4$	12	$11 / 16-12$	$11 / 16(1.06)$	$1(.98)$
$7 / 8$	14	$13 / 16-12$	$13 / 16(1.19)$	$11 / 8(1.10)$
1	16	$15 / 16-12$	$15 / 16(1.31)$	$11 / 4(1.23)$
$11 / 4$	20	$15 / 8-12$	$15 / 8(1.63)$	$19 / 16(1.54)$
$11 / 2$	24	$17 / 8-12$	$17 / 8(1.88)$	$113 / 16(1.79)$
2	32	$2-1 / 2-12$	$2-1 / 2(2.50)$	$27 / 16(2.42)$

